Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethyl 6,6'-dicyano-2,2'-bipyridine-3,3'-dicarboxylate

Xiao He,^{a,b} Gui-Rong Qu,^a Dongsheng Deng^b and Baoming Ji^b*

^aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China

Correspondence e-mail: lyhxxjbm@126.com

Received 17 March 2009; accepted 2 April 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.094; data-to-parameter ratio = 13.1.

In the title compound, $C_{16}H_{10}N_4O_4$, the two pyridine rings are twisted by 44.41 (2)° and the ester groups form dihedral angles of 48.77 (4) and 45.75 (2)° with the corresponding pyridine rings. The crystal structure is stabilized by intermolecular C– $H \cdots O$ hydrogen bonds and π – π stacking interactions between the pyridine rings [centroid-to-centroid distance 3.797 (2) Å].

Related literature

For the synthetic procedures relevant to preparation of the title compound, see: Tichy *et al.* (1995); Glaup *et al.* (2005); Heirtzler (1999)

Experimental

Crystal data

$\begin{array}{l} C_{16}H_{10}N_4O_4\\ M_r = 322.28\\ \text{friclinic, } P\overline{1}\\ a = 8.201 \ (3) \ \text{\AA}\\ a = 10.302 \ (6) \ \text{\AA}\\ a = 10.768 \ (3) \ \text{\AA}\\ a = 109.148 \ (4)^{\circ}\\ B = 106.091 \ (3)^{\circ} \end{array}$	$\gamma = 100.404 (5)^{\circ}$ $V = 787.9 (6) \text{ Å}^{3}$ Z = 2 Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.49 \times 0.45 \times 0.41 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.952, T_{max} = 0.960$	5613 measured reflections 2845 independent reflections 2391 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	218 parameters
$wR(F^2) = 0.094$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
2845 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C4-H4A\cdots O4^i$ 0.93 2.39 3.222 (3)
 149

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

We are grateful to the National Natural Science Foundation of China (grant No. 20872057) and the Natural Science Foundation of Henan Province (No. 082300420040) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2200).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2004). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Glaup, C., Couchet, J. M., Bedel, S., Tisnes, P. & Picard, C. (2005). J. Org. Chem. 70, 2274–2284.

Heirtzler, F. R. (1999). Synlett, 8, 1203–1208.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Tichy, M., Zhvada, J., Podlaha, J. & Vojffsek, P. (1995). Tetrahedron Asymmetry, 6, 1279–1282.

Acta Cryst. (2009). E65, o985 [doi:10.1107/S1600536809012446]

Dimethyl 6,6'-dicyano-2,2'-bipyridine-3,3'-dicarboxylate

X. He, G.-R. Qu, D. Deng and B. Ji

Comment

Binicotinic acid and its derivatives have been proved to be a kind of multifunctional and flexible ligand in the construction of complexes possessing novel and interesting topological structures. Our interest in these compounds has led us to prepare the title compound. First, we synthesized dimethyl 2,2'-bipyridine-3,3'-dicarboxylate 1,1'-dioxide according to the reported method (Tichy *et al.* 1995). Second, the incorporation of cyano group onto 6 and 6' positions of the above compound could be readily performed when adopting the literature methods (Glaup *et al.* 2005; Heirtzler 1999). In this contribution, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains one molecule (Fig. 1.). In the crystal structure, the most striking feature of the title compound is the interesting arrangement of the title molecules, which are linked into centrosymmetric dimers by formation of intermolecular C—H···O hydrogen bonds, in which C4—H4A is a donor and O4 is an acceptor (Table 1, Fig. 2). Short π ··· π contacts between two pyridine rings with centroid-centroid distance of 3.797 (2) Å are observed in the structure.

Experimental

To an ice-cooled solution of dimethyl 2,2'-bipyridine-3,3'-dicarboxylate 1,1'-dioxide (1.22 g, 4 mmol) and trimethylsilyl cyanide (5.2 ml, 40 mmol) in *ca* 40 ml dry CH₂Cl₂ under N₂ was carefully added benzoyl chloride (1.9 ml, 17 mmol). After stirring overnight at room temperature, 10% aq Na₂CO₃ was carefully added to the chilled reaction mixture and it was concentrated at 200 mbar to complete crude product precipitation. This was collected by filtration, washed with water and dried. Purification by silica gel chromatography using 100 ~200 mesh ZCX II eluted by hexane-ethyl acetate (3:1, v/v) gave the yellow solid. The crystalline compound was obtained by slow evaporation of CH₂Cl₂ solution containing the title compound.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH₃), and with U iso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl).

Figures

Fig. 1. View of the title molecule with the atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.

Fig. 2. View of the centrosymmetric dimer; C—H…O hydrogen bonds are indicated with broken lines.

(I)

Crystal data	
$C_{16}H_{10}N_4O_4$	Z = 2
$M_r = 322.28$	$F_{000} = 332$
Triclinic, PT	$D_{\rm x} = 1.358 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.201 (3) Å	Cell parameters from 2697 reflections
b = 10.302 (6) Å	$\theta = 2.4 - 25.5^{\circ}$
c = 10.768 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 109.148 \ (4)^{\circ}$	T = 296 K
$\beta = 106.091 \ (3)^{\circ}$	Block, yellow
$\gamma = 100.404 \ (5)^{\circ}$	$0.49\times0.45\times0.41~mm$
V = 787.9 (6) Å ³	

Data collection

Bruker APEXII CCD diffractometer	2845 independent reflections
Radiation source: fine-focus sealed tube	2391 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.014$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.5^{\circ}$
T = 296 K	$\theta_{\min} = 2.4^{\circ}$
phi and ω scans	$h = -9 \rightarrow 9$

Absorption correction: multi-scan	L = 12 . 12
(SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 12$
$T_{\min} = 0.952, \ T_{\max} = 0.960$	$l = -13 \rightarrow 12$
5613 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0434P)^2 + 0.140P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.094$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
2845 reflections	$\Delta \rho_{min} = -0.11 \text{ e } \text{\AA}^{-3}$
218 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.044 (4)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.24082 (14)	0.31796 (12)	0.50125 (12)	0.0430 (3)
N2	0.10699 (15)	-0.04177 (12)	0.29318 (12)	0.0441 (3)
N3	0.2207 (3)	0.64855 (17)	0.68504 (19)	0.0880 (5)
N4	-0.1464 (3)	-0.37966 (17)	0.06250 (18)	0.0918 (6)
01	0.21123 (14)	0.07920 (12)	0.04429 (10)	0.0584 (3)
O3	0.39330 (14)	0.18868 (11)	0.78250 (10)	0.0537 (3)
O4	0.55513 (13)	0.24358 (11)	0.65966 (11)	0.0589 (3)
O2	0.41072 (15)	0.03548 (12)	0.20273 (11)	0.0611 (3)
C2	0.28278 (17)	0.22264 (15)	0.28064 (14)	0.0425 (3)
C1	0.25460 (16)	0.20947 (14)	0.39931 (14)	0.0392 (3)
C12	0.30974 (18)	0.10132 (15)	0.17406 (14)	0.0448 (3)
C3	0.2918 (2)	0.35319 (16)	0.26803 (16)	0.0520 (4)

H3A	0.3070	0.3642	0.1892	0.062*
C4	0.2783 (2)	0.46654 (16)	0.37267 (17)	0.0534 (4)
H4A	0.2850	0.5553	0.3668	0.064*
C5	0.25452 (18)	0.44348 (14)	0.48638 (16)	0.0461 (3)
C11	0.2373 (2)	0.55804 (17)	0.59939 (19)	0.0585 (4)
C15	0.2181 (3)	-0.0415 (2)	-0.06874 (17)	0.0693 (5)
H15A	0.1425	-0.0479	-0.1578	0.104*
H15B	0.1782	-0.1288	-0.0572	0.104*
H15C	0.3381	-0.0277	-0.0661	0.104*
C9	0.10581 (18)	-0.19269 (14)	0.42201 (15)	0.0448 (3)
H9A	0.0618	-0.2823	0.4223	0.054*
C7	0.28339 (16)	0.05361 (13)	0.54006 (13)	0.0379 (3)
C6	0.21790 (16)	0.06783 (13)	0.41195 (14)	0.0382 (3)
C8	0.22261 (18)	-0.07911 (14)	0.54392 (15)	0.0432 (3)
H8A	0.2603	-0.0914	0.6280	0.052*
C10	0.05610 (17)	-0.16976 (14)	0.29983 (14)	0.0436 (3)
C14	0.42572 (18)	0.17362 (14)	0.66546 (14)	0.0416 (3)
C13	-0.0581 (2)	-0.28668 (17)	0.16696 (18)	0.0595 (4)
C16	0.5312 (3)	0.2948 (2)	0.91195 (18)	0.0781 (6)
H16D	0.4957	0.2978	0.9904	0.117*
H16A	0.5497	0.3878	0.9077	0.117*
H16B	0.6398	0.2692	0.9235	0.117*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0426 (6)	0.0382 (6)	0.0467 (7)	0.0097 (5)	0.0153 (5)	0.0172 (5)
N2	0.0445 (6)	0.0400 (6)	0.0427 (7)	0.0101 (5)	0.0113 (5)	0.0153 (5)
N3	0.1169 (15)	0.0572 (10)	0.0928 (13)	0.0325 (10)	0.0510 (11)	0.0193 (9)
N4	0.0980 (13)	0.0583 (10)	0.0702 (11)	0.0005 (9)	0.0005 (10)	0.0035 (9)
01	0.0661 (7)	0.0712 (7)	0.0413 (6)	0.0318 (6)	0.0166 (5)	0.0232 (5)
O3	0.0612 (6)	0.0478 (6)	0.0391 (5)	0.0067 (5)	0.0151 (5)	0.0092 (5)
O4	0.0460 (6)	0.0583 (7)	0.0626 (7)	0.0006 (5)	0.0143 (5)	0.0246 (6)
O2	0.0594 (7)	0.0714 (7)	0.0530 (6)	0.0332 (6)	0.0153 (5)	0.0225 (6)
C2	0.0385 (7)	0.0450 (8)	0.0438 (8)	0.0108 (6)	0.0120 (6)	0.0209 (6)
C1	0.0361 (7)	0.0385 (7)	0.0406 (7)	0.0093 (5)	0.0106 (5)	0.0167 (6)
C12	0.0417 (7)	0.0506 (8)	0.0437 (8)	0.0114 (6)	0.0155 (6)	0.0220 (7)
C3	0.0543 (9)	0.0559 (9)	0.0567 (9)	0.0159 (7)	0.0229 (7)	0.0335 (8)
C4	0.0556 (9)	0.0434 (8)	0.0701 (10)	0.0160 (7)	0.0239 (8)	0.0317 (8)
C5	0.0422 (7)	0.0380 (7)	0.0571 (9)	0.0109 (6)	0.0168 (6)	0.0191 (7)
C11	0.0652 (10)	0.0415 (9)	0.0706 (11)	0.0165 (7)	0.0269 (8)	0.0225 (8)
C15	0.0746 (11)	0.0858 (13)	0.0416 (9)	0.0346 (10)	0.0174 (8)	0.0161 (9)
C9	0.0437 (7)	0.0360 (7)	0.0567 (9)	0.0096 (6)	0.0208 (6)	0.0200 (7)
C7	0.0376 (7)	0.0376 (7)	0.0402 (7)	0.0117 (5)	0.0162 (6)	0.0158 (6)
C6	0.0380 (7)	0.0369 (7)	0.0406 (7)	0.0111 (5)	0.0149 (6)	0.0159 (6)
C8	0.0467 (7)	0.0426 (8)	0.0448 (8)	0.0132 (6)	0.0183 (6)	0.0216 (6)
C10	0.0396 (7)	0.0370 (7)	0.0463 (8)	0.0083 (6)	0.0119 (6)	0.0118 (6)
C14	0.0433 (7)	0.0370 (7)	0.0442 (8)	0.0128 (6)	0.0135 (6)	0.0175 (6)

C13	0.0613 (10)	0.0434 (9)	0.0568 (10)	0.0070 (7)	0.0098 (8)	0.0136 (8)
C16	0.0843 (13)	0.0666 (11)	0.0445 (10)	0.0064 (10)	0.0046 (9)	-0.0007 (9)
Geometric parav	neters (Å °)					
N1 C1		1 2229 (17)	C1 C	-		1 279 (2)
NI-CI		1.3328 (17)	C4—C:) 4 A		1.378 (2)
NI-C5		1.3430 (18)	C4—H	4A		J.9300
N2-C6		1.3322 (17)	C5—C	11		1.451 (2)
N2-C10		1.3406 (18)	C15—I	115A 115D		J.9600
N3—CII		1.136 (2)		115B		J.9600
N4—C13		1.139 (2)		1150		J.9600
01—C12		1.3252 (17)	С9—С	10		1.376 (2)
01		1.4495 (19)	C9—C	8		1.3786 (19)
03—C14		1.3249 (17)	С9—Н	9A		J.9300
03—C16		1.4483 (19)	C/—C	S		1.3864 (19)
04—C14		1.1999 (16)	C'/—C	5		1.4011 (18)
O2—C12		1.1997 (17)	С7—С	14		1.4913 (19)
C2—C3		1.386 (2)	С8—Н	8A	(0.9300
C2—C1		1.4038 (19)	C10—0	213		1.447 (2)
C2—C12		1.492 (2)	C16—I	116D	(0.9600
C1—C6		1.4942 (19)	C16—I	416A	(0.9600
C3—C4		1.378 (2)	C16—I	416B	(0.9600
С3—НЗА		0.9300				
C1—N1—C5		117.06 (12)	H15A-	-C15—H15C		109.5
C6—N2—C10		117.28 (12)	H15B-	-C15—H15C		109.5
C12—O1—C15		116.20 (12)	C10—0	С9—С8		118.15 (12)
C14—O3—C16		115.67 (13)	C10—0	С9—Н9А		120.9
C3—C2—C1		118.21 (13)	C8—C	9—Н9А		120.9
C3—C2—C12		120.91 (12)	C8—C'	7—С6		118.08 (12)
C1—C2—C12		120.83 (12)	C8—C'	7—C14		120.67 (12)
N1—C1—C2		122.74 (12)	C6—C	7—C14		121.05 (11)
N1-C1-C6		115.11 (11)	N2—C	6—C7		122.92 (12)
C2—C1—C6		121.83 (12)	N2—C	6—C1		114.08 (11)
O2—C12—O1		124.85 (14)	С7—С	6—C1		122.83 (12)
O2—C12—C2		124.19 (13)	C9—C	8—C7		119.38 (13)
O1—C12—C2		110.93 (12)	C9—C	8—H8A		120.3
C4—C3—C2		119.75 (13)	C7—C	8—H8A		120.3
С4—С3—Н3А		120.1	N2—C	10—С9		124.06 (12)
С2—С3—НЗА		120.1	N2—C	10—C13		115.18 (13)
C3—C4—C5		117.53 (13)	С9—С	10—C13		120.76 (13)
C3—C4—H4A		121.2	O4—C	14—O3		125.10 (13)
C5—C4—H4A		121.2	O4—C	14—C7		123.42 (13)
N1—C5—C4		124.68 (13)	O3—C	14—C7		111.43 (11)
N1-C5-C11		115.08 (13)	N4—C	13—C10		179.1 (2)
C4—C5—C11		120.23 (13)	O3—C	16—H16D		109.5
N3—C11—C5		178.05 (19)	O3—C	16—H16A		109.5
O1—C15—H15A		109.5	H16D-	-C16-H16A		109.5
O1—C15—H15B		109.5	O3—C	16—H16B		109.5
H15A—C15—H1	5B	109.5	H16D-	-C16-H16B		109.5

O1—C15—H15C	109.5	H16A—C16—H16B		109.5
C5—N1—C1—C2	0.20 (19)	C8—C7—C6—N2		-3.22 (19)
C5—N1—C1—C6	-173.30 (11)	C14—C7—C6—N2		171.65 (12)
C3—C2—C1—N1	-1.7 (2)	C8—C7—C6—C1		171.66 (11)
C12—C2—C1—N1	175.79 (12)	C14—C7—C6—C1		-13.47 (18)
C3—C2—C1—C6	171.35 (12)	N1-C1-C6-N2		132.04 (13)
C12—C2—C1—C6	-11.14 (19)	C2-C1-C6-N2		-41.53 (17)
C15—O1—C12—O2	5.1 (2)	N1—C1—C6—C7		-43.25 (17)
C15—O1—C12—C2	-176.63 (12)	C2—C1—C6—C7		143.18 (13)
C3—C2—C12—O2	129.19 (16)	С10—С9—С8—С7		0.99 (19)
C1—C2—C12—O2	-48.3 (2)	С6—С7—С8—С9		2.17 (19)
C3—C2—C12—O1	-49.07 (17)	С14—С7—С8—С9		-172.72 (12)
C1—C2—C12—O1	133.48 (13)	C6—N2—C10—C9		2.6 (2)
C1—C2—C3—C4	1.8 (2)	C6—N2—C10—C13		-177.41 (12)
C12—C2—C3—C4	-175.66 (13)	C8-C9-C10-N2		-3.6 (2)
C2—C3—C4—C5	-0.5 (2)	C8—C9—C10—C13		176.48 (13)
C1—N1—C5—C4	1.3 (2)	C16—O3—C14—O4		-2.7 (2)
C1—N1—C5—C11	179.56 (13)	C16—O3—C14—C7		175.13 (13)
C3—C4—C5—N1	-1.1 (2)	C8—C7—C14—O4		130.87 (15)
C3—C4—C5—C11	-179.31 (14)	C6—C7—C14—O4		-43.86 (19)
C10—N2—C6—C7	0.86 (19)	C8—C7—C14—O3		-46.97 (16)
C10—N2—C6—C1	-174.43 (11)	C6—C7—C14—O3		138.30 (12)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4A···O4 ⁱ	0.93	2.39	3.222 (3)	149

Symmetry codes: (i) -x+1, -y+1, -z+1.

Fig. 1

